XRAY IRRADIATION PROCESS SIMULATION

WITH RAYXPERT®

Ludovic EYCHENNE
Antoine GHILARDI
22nd of September

is a software developed by **TRAD Tests & Radiations** since 2012 that associates a **3D modeling** tool to a **Monte Carlo** calculation method to perform radiation simulation and dose rate calculation for the **Industry**, the **Nuclear & Medical fields**

Electron & Positron

Gamma & Xray

Neutron

CONTEXT OF THE STUDY

How can Monte Carlo codes be used to optimize the number and location of dosimeters during an industrial medical irradiation process?

CONTEXT OF THE STUDY

Dosimetry optimization of an Xray irradiation process on a Medical Device

3D MODELING

Use CAD import associated to modeling tools to define 3D model

SOURCE DEFINITION

Define the beam shape, trajectory and spectrum

3D MAPPING

Perform the irradiation process on the products and calculate a 3D mapping to locate the **minimum** and **maximum** dose areas

VIRTUAL DOSIMETERS

Perform the irradiation process with dosimeters located on the specified areas

ANALYSIS & OPTIMIZATION

Dose distribution analysis regarding to different configuration of the product to find the most efficient way to proceed

SOURCE DEFINITION

3D MAPPING

VIRTUAL DOSIMETERS

ANALYSIS & OPTIMIZATION

3D MODELING AND CAD IMPORT THE PRODUCTS

(CAD file)

Products on a cardboard box

Products on a carrier

SOURCE DEFINITION

3D MAPPING

VIRTUAL DOSIMETERS

ANALYSIS & OPTIMIZATION

BEAM SETUP

SOURCE DEFINITION

Settings:

Double sided irradiation

2 × 7 MeV Ebeam

2 × Ta conversion target

converter

SOURCE DEFINITION

Physics involved

Simulate statistically the interactions between radiations and matter

Secondary electron production → Dose deposition

SOURCE DEFINITION

3D MAPPING

VIRTUAL DOSIMETERS

ANALYSIS & OPTIMIZATION

3D MAPPING INSIDE THE PRODUCTS

CALCULATION OUTPUT

3D mapping

- Kerma water calculated
- Results in Gy/h
- Virtual mapping in all cardboard boxes
- 22 680 voxels in total

RESULTS WITH A 3D MAPPING

SOURCE DEFINITION

3D MAPPING

VIRTUAL DOSIMETERS

ANALYSIS & OPTIMIZATION

VIRTUAL DOSE MAPPING

CALCULATION OUTPUT

Detectors

- Absorbed dose calculated
- Results in Gy/h
- Full of water with

$$\rho = 1.0 \, g/cm^3$$

- Dimensions:
 - $2 \text{ cm} \times 0.8 \text{ cm} \times 125 \text{ }\mu\text{m}$
 - similar to a CTA film

RESULTS IN THE DETECTORS

Detectors	Absorbed dose in water (kGy/h)*		Kerma water (kGy/h)*	
	Value	Standard deviation	Value	Standard deviation
Maximum location	22.2	6.4%	25.2	0.5%
Minimum location	19.2	6.8%	20.2	0.5%

- Quantities available for the dose calculation
- Dosimeters can give both quantities (alanine, CTA etc.)
- Have to choose the quantity in your interest

SOURCE DEFINITION

3D MAPPING

VIRTUAL DOSIMETERS

ANALYSIS & OPTIMIZATION

DIFFERENT CONFIGURATION

Simulation **adaptability** and **responsiveness** allow easily to test different configuration of the product

Simulation **adaptability** and **responsiveness** allow easily to test different configuration of the product

Vertical Horizontal

CONCLUSION

As a complementary tool to dosimetry and OQ/PQ dose mappings, simulation results help to optimize the dosimetry and the process

- ✓ precise localisation of minimum and maximum dose areas
- ✓ precise localisation of dosimeters, reduce dosimeters number
- ✓ irradiation duration : dose rate information.
- ✓ test different configurations
- ✓ optimise the process
- ✓ reduce human errors

And at the end, Monte Carlo simulation helps to

- ✓ Reduce cost of dosimetry
- ✓ Increase confidence in dose mapping
- ✓ Increase your efficiency (Quality/Qualification time)

WHAT DO THE STANDARD SAY?

TODAY

SIMULATION

DOSE MAPPING

For Medical device sterilization by radiation processing

11137-3:2017

- → Calculation results should be verified with dose measurements
- ✓ The combination of Monte Carlo simulation and dose mapping can <u>significantly</u> reduce the number of dose mappings required
- ✓ Can be used to ensure that you use enough dosimeters place on the minimum and maximum dose zones
- ✓ Can be used to choose the right type of dosimeter
- ✓ Can be used for interpolating measured results to determine the dose distribution for non-homogeneous products
- ✓ Can confirm that dose specifications can be met
- ✓ Can help you to determine the optimum irradiation radiation scenario

TRAD Tests & Radiations

Since 1994, we have been helping our customers with their projects involving radiation issues. From Space to Earth, with simulation & radiation processing

SOFTWARES EDITORS & ENGENIERING

For more information:

rayxpert.com
trad.fr

<u>r2cots.com</u> fastrad.net

INDUSTRIAL SOLUTIONS

Damien PRIEELS - Product Manager (Research)

IBA & TRAD decided to enter into a long-term partnership

INDUSTRIAL SOLUTIONS

- ✓ Active in radiation processing market & shared vision
 - ✓ Strong complementarities
 - ✓ Potential for synergies

- Marketing
- Sales

• (R&D)

Specific module of RayXpert dedicated to radiation processing

We believe Monte Carlo will help significantly OQ & PQ

INDUSTRIAL SOLUTIONS

We are looking for candidate(s) to participate to a MC study

Demonstrate MC simulations help OQ & PQ and therefore support the transition from EO & gamma to EB & XR **Objective** ☐ Selection of appropriate center(s) & product(s) Optimization of Qualification process AND/OR product packaging + MC study with RayXpert® Content Dose mapping SOLUTIONS Evaluation of benefits for the stakeholder www.trad.fr www.iba-industrial.com You are interested Apply @ & www.iba-industrial.com/form/call-applications You have process/product(s) you want to **Application** (places are limited) qualify & Access to RayXpert Today October 15th November 15th Mid 2022 **Benefits** Qualification of your process or product(s) Selection (3 max) Call for candidates 6 months study ☐ Support from TRAD, IBA & Aerial 25

Thank you for your attention

Application form to participate to the POC

<u>www.iba-industrial.com/form/call-applications</u>

Contact: <u>damien.prieels@iba-group.com</u> <u>antoine.ghilardi@trad.fr</u>

